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Abstract Face biometrics systems are increasingly used

by many business applications, which can be vulnerable

to malicious attacks, leading to serious consequences.

How to effectively detect spoofing faces is a critical

problem. Traditional methods rely on hand-craft fea-

tures to distinguish real faces from fraud ones, but it

is difficult for feature descriptors to handle all attack

variations. More recently, in order to overcome the lim-

itation of traditional methods, newly-emerging CNN

based approaches were proposed, most of which, if not

all, carefully design different network architectures. To

make CNN related approaches effective, data and learn-

ing strategies are both indispensable. In this paper, in-

stead of focusing on network design, we explore more

from the perspective of data. We present that appro-

priate nonlinear adjustment and hair geometry can am-
plify the contrast between real faces and attacks. Given

our exploration, a simple convolutional neural network

can solve the face anti-spoofing problem under different

attack scenarios and achieve state-of-art performance

on well known face anti-spoofing benchmarks.
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1 Introduction

Nowadays, the usage of facial biometrics in various sce-

narios of business and industry is dramatically increas-

ing and becoming popular in authenticating user identi-

ties. One could protect his privacy in electronic devices

using face unlocking techniques, to conveniently open

bank account remotely via identity verification with we-

bcam, and even to authenticate payment with facial

biometrics.

However, it is insecure to use face as a biometric

measure for authentication. A recent study [30] on face

recognition using commercial matchers shows that face

biometric systems can be vulnerable to spoofing at-

tacks, such as fraud photos, videos or masks that launch

against face authentications or recognition systems, and

can lead to inestimable privacy leak and property loss,

for instance, private photos and sensitive bank informa-

tion.

Moreover, Given the rapid development and preva-

lence of social media, people are sharing their facial

photos on the internet intentionally. Malicious people

can easily obtain such photos to attack facial recogni-

tion systems. Comparing with other biometrics, such as

fingerprint and iris, facial images are much more con-

venient to acquire. As a consequence, the demand to

effectively prevent face spoofing attacks is significantly

on the rise.

Researchers are taking much effort in recent studies

to tackle the problem by investigating different clues.

Hardware-based methods take advantages of devices to

catch the differences between real and fake faces, such
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as thermal camera [14] and 3D camera [26]. Despite

of the satisfactory results achieved, the high cost re-

stricts the practicality of hardware based approaches.

Software based methods make use of dynamic clues or

static image clues. Comparing with dynamic clues, for

instance, eye blink [35] and lip movement [11], image

based metrics are more appealing and widely used for

that face anti-spoofing process shares the same infor-

mation as face recognition procedure and can be easily

coupled into it.

Manufacturing procedures, spoofing mediums or sur-

face geometries can result in various artefacts, such as

low quality, image blur, specular reflection, distorted

shading appearance, etc. To locate such artefacts in at-

tacks, image based methods define various feature de-

scriptors, including texture analysis [51], quality mea-

sure [4], and Fisher Vector [5]. However, it is difficult

for hand-craft descriptors to cover all the variations in

different spoofing attacks.

With the success of Neural Networks in image vision

tasks, Yang et al. [50] and Li et al. [29] attempted to

use CNNs to perform anti-spoofing automatically. For

learning based approaches to achieve satisfactory per-

formance, data is of the same importance as learning

strategy. Nevertheless, most previous CNN based ap-

proaches explore various network architectures while ig-

nore the importance of data understanding. Li et al. [29]

made use of the famous VGG-Face architecture and

Yang et al. [50] adopted a champion architecture in

ImageNet contest. They aim to use the learned deep

features to overcome the limitation of traditional fea-

tures. Unfortunately, without fully understanding the

spoofing data, different designs of CNN architecture fail

to defeat many hand-craft descriptors. Recently, CNNs

with more prior knowledges have been proposed. Based

on the observation that depth information is critical in

detecting 2D attacks, Atoum et al. [1] and Liu et al. [32]

presented depth-dependent CNNs. Taking advantage of

time coherence, Li et al. [27] introduced a 3D CNN. Ad-

ditionally, Jourabloo et al. [21] used a noise model based

CNN and Liu et al. [33] presented an unsupervised deep

tree network (DTN) to solve the problem. Comparing

with previous learning methods, their performance is

greatly improved. But they also focus on revising the

architectures of CNN and use complex models.

In this paper, we also present a CNN based method

but from a different perspective. Most existing learning

based methods, if not all, focus on exploring various

network architectures, however, we devote to under-

standing the spoofing data. Instead of designing com-

plex and deep architectures as the previous CNN meth-

ods do, we use the simplest network design to achieve

a promising accuracy, thanks to our better data com-

prehension by exploring different properties of live faces

and attacks. We overview the problem pipeline in Fig. 1.

Traditional methods use retrieved features from designed

metrics for classification, but the representation power

of such feature vectors is limited and will constrain

CNN performance [41]; Previous CNNs replace the en-

tire procedure in traditional methods with an automat-

ically learned convolution neural network. Our pipeline

contains a feature enhancement unit, in which images

are enhanced with distinguishable features amplified.

Comparing with traditional methods, we adjust desired

features without losing any other image information,

while comparing with prior CNN approaches, we focus

more on data understanding rather than learning strat-

egy. Based on our explorations, we achieve state-of-art

accuracy on three well-known datasets with a simple

CNN model.

We summarise our contributions as follows:

– We present that appropriate image adjustments can

amplify the contrast between live faces and attacks

to improve the performance of CNNs. Particularly,

we find that nonlinear improvement of both bright-

ness and contrast can greatly improve the detection

accuracy.

– We propose that the complex shading of hair ge-

ometry can provide important clues for CNN based

spoofing detection. Therefore, type Head (Fig. 4(c))

is superior to type Face (Fig. 4(a)) in CNN based

face anti-spoofing.

– We observe that though RGB colour space performs

poorly in traditional feature based methods, after
our adjustments, it is superior to HSV and YCBCr

in CNN based approaches.

– We demonstrate that given sufficient data under-

standing, a simple network design with much fewer

learning parameters is sufficient to produce decent

results.

Most importantly, we demonstrate a different di-

rection to improve the performance of CNNs. A com-

mon sense in CNN community that manually-selected/

hand-crafted features are not preferred due to informa-

tion loss results in the misconception that preprocessing

data can only reduce accuracy. To avoiding information

loss, we manipulate each image as a whole. As a result,

preprocessing data based on our finds will amplify de-

sired features without losing information. Besides, the

data properties we proposed can be easily generalised

to all kinds of CNNs.
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Fig. 1 Pipeline Overview. From top to bottom: traditional
feature based approaches, previous CNN methods and our
methodology.

2 Literature Review

Researches on 2D face anti-spoofing date back over decades.

Since then, various methods have been proposed un-

der different attack scenarios. We briefly review the re-

lated works in this section. Based on the clues used

by different approaches the state-of-arts can be divided

into different categories, including CNN based methods,

property analysis, artefacts detection, and external as-

sistance.

2.1 Learning Based Methods

Neural networks are proved to be effective in solving

many computer vision tasks. Researchers also attempt

to tackle the face anti-spoofing problem with CNN so-

lutions. Li et al. [29] and Patel et al. [36] proposed

to extract feature based on pre-trained CNN models

VGG-face and CaffeNet respectively while Xu et al. [49]

presented an LSTM-CNN model to make a joint pre-

diction. A CNN architecture is directly used in [50] as

a classifier to detect face attacks. However, the perfor-

mances of approaches mentioned above are unsatisfac-

tory. Most recently, thanks to the success of CNN in

estimating depth information from images [22], depth

based CNNs [1,32] are presented, in which depth infor-

mation is estimated by CNNs and judgements are made

accordingly. Taking advantage of temporal information,

Li et al. [27] and Gan et al. [19] presented 3D convo-

lutional neural networks to solve this problem. They

achieve satisfactory accuracy on video based databases

but cannot deal with image based databases which con-

tains no temporal information. Due to the network com-

plexity, Li et al. [27] needs a much longer training time

as well. Additionally, Jourabloo et al. [21] used a noise

model based CNN and Liu et al. [33] presented an un-

supervised deep tree network (DTN) to solve the prob-

lem, both of which tackled the face anti-spoofing prob-

lem by designing effective network structures. Thanks

to our methodologies, our approach can achieve a sim-

ilar or better performance than existing learning based

methods with a much simpler network architecture on

video based as well as image-based face anti-spoofing

databases.

2.2 Property Analysis

Real photographs and fake attacks have different prop-

erties due to different shooting conditions. Many works

make use of such properties to perform face anti-spoofing.

Real photos and fake attacks share different texture

property since human faces and spoof mediums reflect

light in different manners. The representative texture

analysis based methods include LBP [34,16,17], SIFT

[37], HOG [25,51], DoG [38,45], and SURF [5]. Most

recently, Zhao et al. [53] proposed to consider volume

local binary count patterns to solve the problem. Tex-

ture based methods are fast but may have poor gener-

alisability [37], especially sensitive to illumination vari-

ations and different identities. Certain approaches also

take advantages of motion clues, such as eye blink [35],

and head/lip movement [2] to prevent print attacks. But

motion based method can not deal with video attacks

which have facial motions.

2.3 Artefacts Detection

Spoofing attacks are recaptured photographs of live faces

and thus inevitably contain artefacts caused by colour

distortion, specular reflection and/or blurriness. Gal-

bally et al. [18], Wen et al. [48] and Garcia and de

Queiroz [20] are able to detect fake faces based on image

quality analysis. Moreover, observing that attacks lose

some low frequency information while introduce addi-

tional higher frequency components (noise signals), Li

et al. [28], Pinto et al. [40], and Pinto et al. [39] aim

to differentiate live faces from attacks in frequency do-

main. It is true that artefacts exist in all kinds of at-

tacks, but artefacts changes when attacks vary. There-

fore, such approaches possibly perform differently on

different datasets.

2.4 External Assistance

Hardware Based Methods. Methods in this category

perform face anti-spoofing with the assistance of dif-

ferent hardwares, such as 3D camera [26,15], thermal

camera [44], light field camera [23] and flash light [8].

Though hardware based approaches can achieve higher
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accuracy, the usage of additional sensors restrict their

applications.

User Interactive Methods. User interactive meth-

ods require user cooperation to complete verification

process. For instance, users have to move head for 3D

shape reconstruction [47] and to speak for audio-visual

matching purpose [9,12,10]. These methods achieve ac-

ceptable accuracy at the cost of user inconvenience and

longer recognition time.

3 Methodology

In this section, we explain the mechanisms in details on

why image adjustments, hair geometry and RGB colour

space can improve the face anti-spoofing accuracy. By

taking advantage of the observations, a simple network

design is able to solve the problem effectively.

3.1 Why Real Faces and Fake Ones Are Different?

Denote the intensity value or luminance channel of a fa-

cial image on pixel (x, y) as I(x, y), in which I(x, y) ∈
[0, 1]. Assuming that human face is a Lambertian sur-

face, accordingly, I(x, y) can be expresses as

I(x, y) = <Lam (1)

by the Lambertian Reflectance Law, where < is the re-

flectivity of a surface and Lam represents the ambient il-

lumination. Real faces and attacks have different < due

to different surface geometry and texture. But Lam is

the same under the same lighting condition. Thus < is

the underlying key factor to differentiate real faces from

fraud ones. However, < is not always reliable. For differ-

ent image qualities and lighting conditions, the perfor-

mance of face liveness detection depending on < alone

is unstable [31].

3.2 Image Adjustment

It is meaningful to introduce extra measures besides <
to solve the problem more robustly. After introducing

flash lights, Chan et al. [8] modifies Eq. 1 with

If (x, y) = <Lam + (< · ℵ) · Lf , (2)

where ℵ is the parameter associated with the flash in-

tensity, direction and the normals of the face surface.

The extra measure provided by the second term of eq. 2

helps to reduce the error rate. Nevertheless, Chan et

al. [8] is unable to deal with images taken under dark en-

vironment or without flashes. As a result, it cannot test

on the well-known benchmarks we evaluate in Sec. 5.

(a) Original (b) α (c) β (d) α + β

Fig. 2 A visualisation on nonlinear brightness and contrast
adjustments (+35%). From top to bottom: real, print attack
and video attack from the CASIA-FASD dataset, respectively.

We propose that image adjustments can work as

additional measures in a more general fashion, which

could be post-added to all existing images easily.

Define the parameters that control image contrast

and brightness as α and β respectively. Given I(x, y),

output Ie(x, y) after adjustment can be written as

Ie(x, y) = α · I(x, y) + β, (3)

where α ∈ (0, 2) and β ∈ (−1, 1). Contrast and bright-

ness will be changed accordingly when adjusting α and

β respectively. The above adjustments can be linear or

nonlinear depending on the linearity or nonlinearity of

α and β, namely,

α, β =


Cα, Cβ linear

zα(I(x, y), Cα), zβ(I(x, y), Cβ) nonlinear,

(4)

where Cx is a constant controlling the amount of ad-

justment and zx is a nonlinear function of I and Cx.

(x ∈ α, β.)

Gamma Correction γ is another nonlinear adjust-

ment to correct image brightness, where brightness de-

creases with γ > 1 while increases when 0 < γ < 1.

Introducing γ, the output Ie(x, y) becomes

Ie(x, y) = (α · I(x, y) + β)γ , (5)

which can be rewritten as

Ie(x, y) = (α · <Lam + β)γ . (6)
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Finally, a nonlinear activation function f(Ie(x, y))

restricts pixel values within the range [0, 1],

f(Ie(x, y)) =


0 Ie(x, y) < 0

Ie(x, y) 0 < Ie(x, y) < 1

1 Ie(x, y) > 1.

(7)

Theoretically, Eq. 6 indicates that

i. Via transforming the original signal I(x, y), α, β

and γ are introducing additional information to fa-

cilitate the detection procedure.

ii. with the help of nonlinear activation f in Eq. 7,

constant β should be able to affect the method ac-

curacy, because the distribution of extremely dark

and white pixels in real and fake faces are explicitly

different, for example, real hair is relatively dark but

hair in attacks can be over-whitened by reflection.

iii. nonlinear α and β should outperform constant α

and β, since real faces and attacks will be obviously

more distinguishable with functions zx(I(x, y), Cx)

than with constants Cx.

Visually, the image adjustments can amplify the dif-

ferences between live and spoofing images:

i. With the brightness enhancement (Fig. 2 (c)), the

medium reflection in spoofing images, are obviously

amplified and become easier to detect.

ii. Brightness enhancement can also serve to magnify

moire artefacts. Note that moire patterns are impor-

tant clues in video attacks. We observe that moire

patterns are more noticeable in brighter conditions.

An example of spoofing image with moire artefacts

is shown in Fig .3.

iii. Comparing with increasing brightness, the advan-

tage of improving contrast is less obvious (Fig. 2(b)).

We will demonstrate later that actually reducing

contrast tends to produce higher accuracy.

iv. Though improving contrast alone is not sufficient,

contrast improvement can facilitate brightness en-

hancement to improve visual differentiation (Fig. 2(d)).

Note the difference between the real images in Fig. 2(c)

and Fig. 2(d), especially on the hair regions.

Fig. 3 Moire patterns are more noticeable in brighter part
of the image.

(a) Face (b) Silhouette (c) Head

Fig. 4 Demonstration of using different face types (facial in-
formation). Most existing methods uses (a) or (b) while we
find that additional hair information (c) can improve detec-
tion accuracy.

v. The introduced adjust helps to amplified the arte-

facts in spoofing images without damaging the fea-

tures in live images. As shown in Fig. 2, the live pho-

tos remain realistic after the different adjustments.

3.3 Hair Geometry

Real faces and attacks are different in that human faces

are in three dimensions with depth information, while

either video attacks or print-photo attacks lose the 3D

geometric property, leading to reflect lights in a differ-

ent manner. To separate real from fake, existing ap-

proaches make use of the different shading appearances

on faces. Nevertheless, most previous researches discard

hair information, as explained in Fig. 4. Comparing

with the limited variations on facial features, shading on

3D hair geometry is way more complicated due to large

variations on hair textures, colours and styles. More-

over, human hair has complex BRDF and local lighting

effects [7], making it extraordinary hard for fraud at-

tacks to maintain the original appearance. As a result,

hair appearance can be an effective measure to verify a

genuine face.

In Fig. 5 , we visualise the feature maps of hair

(without adjustment described in Sec. 3.2 ) after the

first convolution layer of a three-layer CNN (Details of

CNN architecture will be discussed later in Sec 3.5). It

can be seen clearly that hairs in spoofing images contain

less fine geometry/features comparing with that in live

photos, which provides critical information during the

detection process. In Fig. 6, we show the feature maps

with nonlinear adjustment (+35% contrast and +35%

brightness). An important observation is that after ad-

justment, feature maps of hair in attacks are further

smoothed while that in real photos still preserve the

noticeable fine hair strips. That details of hair remain

in live photos but not in attacks can faciliate to dif-

ferentiate real photos from fake ones, which we infer

is the reason why the performance of using type Head
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(a) Real photos (b) Video attacks

Fig. 5 Visualisation of feature maps of hair without adjustment.

(a) Real photos (b) Video attacks

Fig. 6 Visualisation of feature maps of hair with nonlinear +35% contrast adjustment and +35% brightness adjustment.

outperforms that of type Face. Please zoom in for best

visualisation and refer to the Appendix for feature map

visualisation of other attack types.

3.4 RGB Colour Space

For that shading information is especially important

for spoofing face detection, colorspaces with indepen-

dent luminance channels are expected to perform bet-

ter. Unsurprisingly, most feature based methods find

that HSV and YCbCr colour spaces are preferable that

RGB, in which the three colour components are highly

correlated and the luminance and chrominance are in-

separable. Most, if not all, existing CNN methods ei-

ther keep the convention of traditional methods by us-

ing HSV and YCbCr or do not explicitly explore the

performance of different colour spaces.

Nevertheless, we observe that RGB colour space can

outperform HSV and YCbCr after the proposed adjust-

ments operation in Section. 3.2. We suppose the reason

might be that real faces and attacks reflect different

amount of red, green and blue component. The de-

pendency between luminance and chrominance in RGB

colour space complexes the problem but simultaneously,

introduces more combination possibilities of luminance

and chrominance. Via amplifying the distinguishable

features with the proposed adjustment, such compli-

cated differences can be better comprehended by CNN

but are troublesome for hand-craft features to under-

stand.

3.5 Face Anti-Spoofing using Convolutional Neural

Network

Thanks to the data characteristics we described above,

a simple CNN can solve the problem effectively. Our

network design is demonstrated in Fig. 7. The feature

descriptor consists of N blocks, each of which is the

combination of a convolutional layer with RELU activa-

tion and a feature pooling operation. In experiments, we

find that N = 3 is sufficient. Following the feature de-

scriptor, a FC layer retrieves the deep histogram of the

feature maps, which is then use by another FC layer for
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Fig. 7 Network architecture.

fake and real detection. The categorical cross-entropy

loss is used to train the network,

L = −
∑
i

∑
j

ti,j log(pi,j), (8)

where p are the predictions, t are the ground-truth la-

bels, i denotes the data point and j denotes either real

faces or attacks.

Setup. Since the three benchmarks we evaluate

are different in size, we slice the data differently. For

the CASIA dataset [52], we resize images to 128× 128

and extract patches from each image with stride 64 and

patch size 64×64. It takes about 5 minutes to train the

dataset with 30 epochs. For the Replay-attack bench-

mark [13], images are resized to 96 × 96 and patches

are extracted with stride 24 and size 24 × 24. It takes

about 200 minutes to train with 50 epochs. For the

MSU USSA database [37], we resize images to 256×256

and extract patches with stride 32 and size 64× 64. It

takes about 50 minutes to train with 50 epochs. For

video datasets, we randomly retrieve 200 frames from

each video. Patches from live images/videos are labeled

1 and 0 otherwise. During testing, the predicted label

for each video/image will be the average score of all its
extracted patches.

Network parameters are learned via Adam [24], with

learning rate 0.0001 and batchSize 64. We use 2 × 2

max pooling with stride 2, 50 × i convolutional filters

for block i (i = 1...N), 5×5 convolutional kernels in the

first block and 3× 3 convolutional kernels in the other

blocks. The first FC layer contains 1000 units while the

last FC layer consist of 2 units. Dropout with rate 0.5

is used. Our method is implemented using Lasagne on

a NVIDIA GeForce GTX 1080 GPU.

4 Analysis

In this section, we investigate the influence of differ-

ent factors on the CASIA-FASD benchmark [52]. When

α = 1, β = 0, and γ = 1, the image will be kept un-

changed. Specifically, we refer x% adjustment on con-

trast to Cα = 1+ x
100 while y% adjustment on brightness

to Cβ = y
100 and use the fast gain and bias function [42]

Fig. 8 Nonlinear contrast and brightness adjustment for
type Head. The x-axis (α, β) indicates the amount of ad-
justment (%) and the y-axis shows the HTER error (%). The
blue line indicates the error produced by the original data for
all image resolutions while the red curve indicates the errors
for all image resolutions at every adjustment.

to interpret nonlinear function zα and zβ . From now on,

we use +35% nonlinear enhancement on both contrast

α and brightness β, no gamma correction (γ = 1), Head

face type, RGB colour space, and N = 3 blocks to pro-

duce the results, except otherwise stated.

4.1 Performance of Adjustment Strategies

Theoretically, we have explored the functionality of dif-

ferent adjustment in Section. 3.2. In this section, we

explore the influence of proposed strategies experimen-

tally. Fig. 9, Fig. 10 and Fig. 11 quantitively verify the

performance of brightness β, contrast α and Gamma γ

adjustments, respectively. In each figure, the x-axis in-

dicates the amount of adjustment and the y-axis shows

the corresponding HTER error (%).

Overall, the statistics indicates:

– For different adjusting amounts in each type of ad-

justment (brightness, contrast, or Gamma correc-

tion), using type Head (with hair information) pro-

duces higher accuracy than using type Face (with-

out hair information).

– Within a reasonable range, both linear and nonlin-

ear adjustments on brightness/contrast reduce the

error. Nevertheless, nonlinearity outperforms linear-

ity.

– Within a reasonable range, either improve or re-

duce brightness/contrast can improve the accuracy

(or maintain the similar accuracy as the original).

However, for brightness, a positive value is more

preferred (improve brightness) while the opposite is

true for contrast (reduce contrast).

– Adjusting brightness/contrast to the extreme would

increase the error.



8 Yujing Sun* et al.

Fig. 9 Brightness Adjustment. The x-axis and y-axis show the adjusting amount of β (%) and HTER error (%), respectively.

Fig. 10 Contrast Adjustment. The x-axis and y-axis show the adjusting amount of α (%) and HTER error (%), respectively.
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Fig. 11 Gamma correction. The x-axis and y-axis show the value of γ and HTER error (%), respectively. The blue line
indicates the error produced by the original data for all image resolutions while the red curve indicates the errors for all image
resolutions at every adjustment.

– For type Head, Gamma correction that increases

image brightness (γ ∈ (0, 1]) can reduce the error,

which is accordance with the performance of bright-

ness adjusment. But Gamma correction cannot fa-

cilitate to reduce error for type Face (Fig. 11).

In experiments, we find that nonlinearly adjusting

both brightness and contrast for type Head, can further

improve the performance, as demonstrated in Fig. 8.

– A large contrast improvement alone (+35) is not

able to reduce the error greatly (Fig. 10), but with

the help of a large brightness enhancement (+35),

they together (+35,+35) can achieve a better accu-

racy.

– Though greatly reducing brightness (-35) would in-

crease the error to some extent (Fig. 9), while with

the assistance of contrast reduction (-35), they to-

gether (−35,−35) can have a reasonable performance.

– Reduce contrast and improve brightness to the ex-

treme, such as (−35, 35), will damage the accuracy.

Generally speaking, on one hand, nonlinearly adjusting

both contrast and brightness to the same direction for

type Head is preferable; On the other hand, a positive

direction tends to produce a lower error rate. Please

refer to the Appendix for the performance of joint non-

linear adjustment on type Face in Fig. A1 and joint

linear adjustment in Fig. A2.

We visually demonstrates the influences of nonlin-

ear adjustments on α and β in Fig. 2. Improving bright-

ness amplifies the distortions on attacks, such as tex-

ture and colour, while, contrast improvement does not

have such impact. The best differentiation is achieved

by combining them both. Note that real hair colour

is over-whitened when increasing brightness alone (the

top image on column (c),) which is resolved after intro-

ducing additional contrast enhancement (the top image

of column (d)).

(a) Live (b) Attack (c) Live (d) Attack

Fig. 12 Yang et al. [2014] uses larger portion of the images to
include more background. The former two are from CASIA-
FASD and the latter two are from replay-attack dataset.

4.2 Influence of Hair Geometry

Table. 2 demonstrates that effect of different face types.

Similar to the findings in [37], we observe that making

use of the entire face regions (Silhouette) can improve

the detection accuracy except for faces in high reso-

lution. However, as expected, the accuracy is further

improve for Head face type, thanks to the hair clues.

The reason why the most noticeable improvement is

achieved on images in low resolution is that low qual-

ity faces are taken at a long distance with more loss

on depth information, making live faces more “2D-like”

and indistinguishable from the ones on attacks. Accord-

ingly, the additional clues introduced by hair geometry

contribute to reduce the detection error to a great ex-

tent.

Yang et al. [50] observes that CNN performance can

be improved by including more background information

(Fig. 12(d)), especially the photo boundary (Fig. 12(b)).

Nevertheless, a more recent study in [37] indicates that

the boundary artefacts can only reduce a bit error and

the background hardly improves the performance. De-

spite of the effectiveness of the artefacts, it is improper

to tackle this problem with such non-biometrics, which

can be intentionally prevented by malicious users. Dif-

ferent from [50], our type Head (Fig. 4(c)) leaves out

the obvious artefacts and contains as little background

as possible. Our approach outperforms [50] and verifies
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(a) With bg (b) W/o bg

Fig. 13 An example of data in MSU USSA database. When
using images with more background information (a), the de-
tection accuracy decreases.

that hair information is superior to the background/

artefacts in face anti-spoofing.

We also test on the MSU USSA database. When

using type Head, our HTER and ERR are 0.52% and

0.40% respectively, but if feeding images with more

background information (as demonstrated in Fig. 13)

to our CNN, the average HTER and ERR increase to

1.56%, and 1.79%, respectively.

4.3 Effects of Colour Spaces

We then explore how different colour spaces influence

the network performance. In terms of producing better

accuracy, YCbCr and HSV colorspaces are preferred in

traditional feature based approaches. Nevertheless, Ta-

ble. 3 demonstrates that RGB colour space can achieve

the best performance after our data enhancement. Re-

gardless of the different face types, either YCbCr or

HSV defeats RGB without adjustment but RGB out-

performs them both after enhancing contrast α and

brightness β by +35%.

4.4 Deeper CNNs

Prior CNN based methods rely on deep models to per-

form face anti-spoofing, but results in Table. 4 indicate

that many CNNs with deep architectures have poor

performance, such as DPCNN [29] and 3DCNN [19].

We show in Table. 1 that the accuracy improvement

by deeper architectures is limited. With the number of

blocks increasing, the reduction of HTER error declines

for all resolutions. Fusing feature maps from block 2, 3

and 4 can not further improve the performance. We

also attempt to replace the last max pooling operation

before the FC layers with a spatial pyramid pooling

operation, but the accuracy is not improved.

5 Comparision and Discussion

We compare our approach with state-of-arts on three

well-known face anti-spoofing benchmarks. To evaluate

all the three datasets, for our methods, we use the same

set-ups as that in the experiments of Sec. 4: joint +35%

nonlinear adjustment on both brightness and contrast,

type Head, RGB colorspace, and N = 3 blocks. For

comparing methods, we use the statistics in the original

papers.

5.1 Databases

CASIA-FASD [52] is the most widely used database

in evaluating face anti-spoofing performance. Each sub-

ject in the benchmark is taken 3 live videos with dif-

ferent face resolutions under uncontrolled lighting con-

ditions and each live video is prepared with 3 attacks:

warp print attack, cut print attack and replay attack.

Due to the attacks taking facial motions into consid-

eration, previous motion based approaches will fail on

this benchmark, such as eye blinking [35]. It contains 50

subjects in total, with 20 for training and 30 for testing.

Replay-Attack [13] consists of 1300 videos for 50

subjects, including all live and spoofing videos. Both

print and replay attacks are covered in this set. Com-

paring with CASIA-FASD, this dataset is much larger

in size but is collected under controlled illuminating

conditions and backgrounds. The 50 subjects are di-

vided into train, develop, and test set with 15, 15, 20

identities respectively.

MSU USSA [37] is a recent dataset, collecting live

images of 1, 040 in-the-wide celebrities, that are highly
diverse in resolution, illumination, chrominance, and

so on. It contains 8 different attacks from computer,

smartphone, tablet and printed papers.

5.2 Quantitive Comparison

We quantitively compare our method with various state-

of-arts in Table. 4, including CNN [50], LSTM-CNN [49],

DPCNN [29], Colour LBP [3], Visual Dynamics [46],

Spectral Cubes [39], Colour Texture [4], Videolet Ag-

gregation [43], Distortion Clue [37], Fisher Vector [5]

and Patch and Depth CNN [1]. For fairness, we use the

same protocols as specified by the datasets to evalu-

ate our performance. For the first two benchmarks, we

use the training sets to learn the network parameters

and the testing set to compute the error rates, while

a subject-exclusive five fold cross validation for MSU

USSA. Replay-Attack provides an additional develop

set, which we use as a validation set. We calculate ERR
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Table 1 Performance of Deeper CNNs. (HTER %).

Resolution
Without Spatial Pyramid Pooling With Spatial Pyramid Pooling

2 Blocks 3 Blocks 4 Blocks Fusion All 2 Blocks 3 Blocks 4 Blocks Fusion All

Low Quality 3.33 2.78 2.78 3.33 5.0 6.11 5.0 5.0
Medium Quality 2.22 1.11 1.67 0.56 2.22 2.22 2.22 2.22

High Quality 1.1 0.56 0.56 0.56 0.56 0.56 0.56 0.56
Overall 2.22 1.48 1.67 1.48 2.59 2.96 2.59 2.59

Table 2 Influence of using different face types (HTER %).

Resolution Face Silhouette Head

Low Quality 9.44 5.0 2.78
Medium Quality 5.0 1.67 1.11

High Quality 0.56 1.67 0.56

Table 3 Influence of different colorspaces (HTER %). For
the results with adjustment, contrast and brightness are non-
linearly enhanced by +35%.

Colour Space
Face Head

Original With adj Original With adj

YCbCr 3.89 6.29 3.7 4.26
HSV 6.30 5.74 2.59 3.15
RGB 4.45 5.0 2.97 1.48

on the test set and use the corresponding threshold to

compute HTER error. Note that since the MSU USSA

is up to date, only a few methods evaluate on it.

We show the comparision in Table. 4. Due to the

limitations of the representation power, the performance

of traditional methods differs on different datasets, such

as Colour LBP [3]. it is also clear that many feature

based methods, especially the recent Fisher Vector [5],

are superior to many CNN methods, such as CNN [50],

LSTM-CNN [49], DPCNN [29] and Patch CNN [1], indi-

cating that learning strategy alone is insufficient to well

solve the problem. With the assistant of a depth-based

CNN, Patch and Depth CNN [1] achieves to reduce the

error of using patch CNN alone but still produces higher

errors than ours in CASIA and Replay-attack database.

Note that all the CNN based-methods in the compari-

son use complex and deep model architectures. With a

better understanding on the spoofing data, our method

can producing competing results on all the three bench-

marks with a very simple network design.

5.3 Limitations

Our method acts on image brightness and contrast.

Thus, if a training set does not contains enough lu-

minance variation or is taken under different lighting

condition from that of the test set, our detection ac-

curacy might be reduced. The Oulu database [6] is the

case where images in the training set are taken under

one lighting condition while images in the test set are

taken under another lighting condition. Our method is

not designed to handle such situation. However, if the

training set contains enough luminance variations, such

as the in-the-wild MSU USSA database, our method

can still produce reasonable results.

6 Conclusion and Future Work

To conclude, we present a systematic study on face anti-

spoofing by investigating different image properties. To

improve the detection accuracy, data and learning mod-

els are both indispensable. Prior CNN methods focus

more on exploring different networks but neglecting the

importance of data. With a thorough analysis on the

spoofing data, we make a simple network architecture

achieve state-of-art performance. As a future work, We

would like to find a way to simulate the data enhance-

ment procedure as a layer in the network, so that a

network can be trained from end to end.
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Appendix

Fig. A1 Nonlinear contrast and brightness adjustment for
type Face. The x-axis (α, β) indicates the amount of adjust-
ment (%) and the y-axis shows the HTER error (%). The
blue line indicates the error produced by the original data for
all image resolutions while the red curve indicates the errors
for all image resolutions at every adjustment.

Fig. A2 Linear Contrast and brightness adjustment. The
blue line indicates the error produced by the original data for
all image resolutions while the red curve indicates the errors
for all image resolutions at every adjustment.



14 Yujing Sun* et al.

(a) Paper attacks without adjustment

(b) Paper attacks with adjustment

(c) Curved paper attacks without adjustment

(d) Curved paper attacks with adjustment

Fig. A3 Visualisation of hair feature maps in paper attacks
and curved paper attacks. For the ones with adjustment, the
adjustment is +35% nonlinear improvement on both contrast
and brightness.


