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Abstract—Digital cameras and mobile phones enable us to
conveniently record precious moments. While digital image
quality is constantly being improved, taking high-quality photos
of digital screens still remains challenging because the photos
are often contaminated with moiré patterns, a result of the
interference between the pixel grids of the camera sensor and
the device screen. Moiré patterns can severely damage the visual
quality of photos. However, few studies have aimed to solve this
problem. In this paper, we introduce a novel multiresolution
fully convolutional network for automatically removing moiré
patterns from photos. Since a moiré pattern spans over a wide
range of frequencies, our proposed network performs a nonlinear
multiresolution analysis of the input image before computing how
to cancel moiré artefacts within every frequency band. We also
create a large-scale benchmark dataset with 100, 000+ image
pairs for investigating and evaluating moiré pattern removal
algorithms. Our network achieves state-of-the-art performance
on this dataset in comparison to existing learning architectures
for image restoration problems.

Index Terms—Moiré pattern, neural network, image restora-
tion

I. INTRODUCTION

NOWADAYS, digital cameras and mobile phones play
a significant role in people’s lives. They enable us to

easily record any precious moments that are interesting or
meaningful. There exist many occasions when people would
like to capture digital screens. Such occasions include taking
photos of visual contents on a screen, or shooting scenes
involving digital monitors. While image quality is constantly
being improved, taking high-quality photos of digital screens
still remains challenging. Such photos are often contaminated
with moiré patterns (Fig. 4).

A moiré pattern in the photo of a screen is the result of the
interference between the pixel grids of the camera sensor and
the device screen. It can appear as stripes, ripples, or curves
of intensity and colour diversifications superimposed onto the
photo. The moiré pattern can vary dramatically due to a slight
change in shooting distance or camera orientation. This moiré
artefact severely damages the visual quality of the photo. There
is a large demand for post-processing techniques capable of
removing such artefacts. In this paper, we call images of digital
screens taken with digital devices moiré photos.

It is particularly challenging to remove moiré patterns in
photos, which are mixed with original image signals across
a wide range in both spatial and frequency domains. A
moiré pattern typically covers an entire image. The colour or
thickness of the stripes or ripples in such patterns not only
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Fig. 1. Given an image damaged by moiré patterns, our proposed network
can remove the moiré artefacts automatically.

changes from image to image, but also is spatially varying
within the same image. Thus, a moiré pattern could occupy a
high-frequency range in one image region, but a low-frequency
range in another region. Due to the complexity of moiré
patterns in photos, little research has been dedicated to moiré
pattern removal. Conventional image denoising [1], and texture
removal techniques [2], [3] are not well suited for this problem
because these techniques typically assume noises and textures
occupy a higher-frequency band than true image structures.

On the other hand, convolutional neural networks are lead-
ing a revolution in computer vision and image processing.
After successes in image classification and recognition [4],
[5], they have also been proven highly effective in low-
level vision and image processing tasks, including image
super-resolution [6], [7], demosaicking [8], denoising [9], and
restoration [10].

In this paper, we introduce a novel multiresolution fully con-
volutional neural network for automatically removing moiré
patterns from photos. Since a moiré pattern spans over a wide
range of frequencies, to make the problem more tractable, our
network first converts an input image into multiple feature
maps at various different resolutions, which include different
levels of details. Each feature map is then fed into a stack
of cascaded convolutional layers that maintain the same input
and output resolutions. These layers are responsible for the
core task of canceling the moiré effect associated with a spe-
cific frequency band. The computed components at different
resolutions are finally upsampled to the input resolution and
fused together as the final output image.

To train and test our multiresolution network, we also
create a dataset of 135,000 image pairs, each containing an
image contaminated with moiré patterns and its corresponding
uncontaminated reference image. The reference images are
taken from the ImageNet dataset. The contaminated images
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have a wide variety of moiré effects. They are obtained by
taking photos of reference images displayed on a computer
screen using a mobile phone. To our knowledge, this is the
first large-scale dataset for research on moiré pattern removal.
The proposed network achieves state-of-the-art performance
on this dataset, compared with existing learning architectures
for image restoration problems.

We summarise our contributions in this paper as follows.
1 We present a novel and highly effective learning archi-

tecture for restoring images contaminated with moiré
patterns.

2 We also create the first large-scale benchmark dataset for
moiré pattern removal. This dataset contains 100, 000+

image pairs, and will be publicly released for research
and evaluation.

II. BACKGROUND AND RELATED WORK

A. The Moiré Effect

When two similar, repetitive patterns of lines, circles, or
dots overlap with imperfect alignment, a new dynamic pattern
appears. This new pattern is called the moiré pattern, which
can involve multiple colours. A moiré pattern changes the
shape and frequency of its elements when the two original
patterns move relative to each other (Fig. 2).

Moiré patterns are large-scale interference patterns. For
such interference patterns to occur, the two original patterns
must not be completely aligned. Moiré patterns magnify
misalignments. The slightest misalignment between the two
original patterns could give rise to a large-scale, easily visible
moiré pattern. As the degree of misalignment increases, the
frequency of the moiré pattern may also increase.

Moiré patterns often occur as an artefact of images gen-
erated by digital imaging or computer graphics techniques,
such as when scanning a printed halftone picture or rendering
a checkerboard pattern that extends toward the horizon [11].
The latter is also a case of aliasing due to undersampling a
fine regular pattern.

a) Moiré Photos: Photographs of a computer or TV
screen taken with a digital camera often exhibit moiré patterns.
Examples are shown in Fig. 4. This is because a screen consists
of a grid of pixels while the camera sensor is another grid of
pixels. When one grid is mapped to another grid, pixels in
these two grids do not line up exactly, giving rise to moiré
patterns.

Similar to the formation of general moiré patterns, when
the relative position between a screen and a digital camera
changes, the moiré pattern in the image can change dra-
matically. It can be 1) of various types: stripes, dots or
waves, 2) of various scales, 3) of various levels of intensity,
4) anisotropic or isotropic, and 5) uniform or non-uniform.
Removing such moiré patterns with diverse properties is a
challenging problem.

The occurrence of moiré patterns in photographs of com-
puter or TV screens does not indicate a defect in the screen
but is a result of a practical limitation in display technology. In
order to completely eliminate moiré patterns, the dot or stripe
pitch on the screen would have to be significantly smaller

Fig. 2. The mechanism underlying a general moiré pattern. The changing
misalignment between two repetitive patterns produces varying moiré patterns.

than the size of a pixel in the camera, which is generally not
possible [12].

B. Related Work

Moiré Pattern Removal Several methods have been pro-
posed to remove different types of moiré patterns. Sidorov
and Kokaram [13] presented a spectral model to suppress
moiré patterns in film-to-video transfer using telecine devices.
However, the moiré patterns they deal with are monotonous
and monochrome. Thus, their method is unsuitable for elimi-
nating the moiré patterns in our context. Observing that moiré
patterns on textures are dissimilar while a texture is locally
well-patterned, Liu et al. [14] proposed a low-rank and sparse
matrix decomposition method to remove moiré patterns on
high-frequency textures. Because our moiré patterns occur on
high-frequency textures as well as on low-frequency structures,
the method in [14] is unable to solve our problem. Taking
advantage of frequency domain statistics, Sur and Grédiac [15]
proposed to remove quasi-periodic noise. Different from our
moiré patterns, quasi-periodic noise is simple and regular.
Due to the complexity of our moiré patterns, aforementioned
methods cannot remove the artefacts well while preserving the
original image appearance.

Image Descreening In order to print continuous tone
images, most electrophotographic printers take advantage of
the halftoning techniques, which rely on local dot patterns
to approximate continuous tones. Scanned copies of such
printed images are commonly corrupted with screen-like high-
frequency artefacts (moiré effect), exhibiting low aesthetic
quality. Image descreening aims at reconstructing high-quality
images from scanned versions of images printed using halfton-
ing (such as scanned books), and has been well studied in
the past decades. Various methods have been proposed, such
as printer-end algorithms [16], [17], image smoothing tech-
niques [18], learning based methods [19], [20], and advanced
filters [21]–[23]. Specialised methods have been proposed to
process a specific subset of images, such as paper checks [24].
Shou and Lin [20] descreened images on the basis of a learning
based pattern classification process. They found that it is
sufficient to consider two classes of moiré patterns to produce
satisfactory results. The reason is that halftoning typically
involves binary colours, and that the viewing distance and
angle during scanning are almost fixed. Such constraints make
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moiré patterns in the descreening problem regular, uniform,
and local. Therefore, existing image descreening techniques
are inadequate to deal with our complex moiré patterns.

Texture Removal Since moiré patterns in photos of-
ten have high-frequency and repetitive components, texture
removal algorithms are a class of relevant techniques. Xu
et al. [2] introduced relative total variation to describe and
identify textures. Karacan et al. [25] took advantage of region
covariances to separate texture from image structure. Ono et
al. [26] utilised block-wise low-rank texture characterisation
to decompose images into texture and structure components.
Cho et al. [3] combined the bilateral filter with a “patch shift”
texture range kernel to achieve a similar goal. Sun et al. [27]
took advantage of l0 norm to retrieve structures from textured
images. Ham et al. [28] performed texture removal through
image filtering with joint static and dynamic guidance. State-
of-the-art methods define a variety of local filters to remove
high-frequency textures. However, moiré patterns in photos are
not merely high-frequency artefacts but span a wide range of
frequencies. In addition, moiré patterns also introduce colour
distortions, which existing texture removal algorithms would
not be able to remove.

Image Restoration Image restoration problems aim at
removing noises or reconstructing high-frequency details. Re-
cently, learning techniques have been successfully applied to
image restoration tasks, including image super-resolution [6],
[7], [10], denoising [9], [10], and deblurring [10], [29]. These
learning based methods have achieved state-of-the-art perfor-
mance in image quality improvement. The problem we aim
to solve in this paper can be considered as a special image
restoration problem as well since it attempts to reconstruct the
uncontaminated image by removing moiré artefacts. However,
different from the uniformly distributed noises in the denoising
task and the missing high-frequency details in the super-
resolution task, the moiré patterns in our problem can be
anisotropic and non-uniform, and exhibit features across a
wide range of frequencies. The models employed in traditional
image restoration tasks are not specifically tailored for our
problem and can only achieve suboptimal performance. Most
recently, Gharbi et al. [8] presented a learning-based method
to demosaic and denoise images. However, demosaicking is
also limited to removing high-frequency artefacts only.

III. MULTIRESOLUTION DEEP CNN FOR MOIRÉ PATTERN
REMOVAL

By considering problem complexity, we choose CNNs to
remove moiré patterns in photographs due to their recent
impressive performance on image restoration tasks. In this
section, we present a multiresolution fully convolutional neural
network to tackle the problem. It exploits intrinsic correlations
between moiré patterns and image components at different
levels of a multiresolution pyramid. The training process of our
network jointly optimises all parameters to minimize the loss
function. As shown in Fig. 1, once trained, our network can
automatically remove moiré patterns in contaminated images.

A. Network Architecture

Our network architecture is outlined in Fig. 3, which
includes multiple parallel branches at different resolutions.
The branch at the top processes feature maps at the original
resolution of the input image while other branches process
coarser and coarser feature maps. The first two convolutional
layers in each branch form a group and are responsible for
downsampling the feature maps from the immediate higher-
level branch by half if there is such a higher-level branch.
Therefore the feature maps generated after the first two con-
volutional layers at all branches can be stacked together to
form an upside-down pyramid, where any feature map has
half of the resolution of the feature map at the next higher
level. Interestingly, in contrast to traditional image pyramids
computed using linear filters, our pyramid is computed using
nonlinear “filters” (i.e. convolutional kernels + nonlinear acti-
vation functions). By converting the input image into multiple
feature maps at various different resolutions, we aim to expose
different levels of details in the input image.

Inside each branch, the output feature maps from the first
two layers are fed into a sequence of cascaded convolutional
layers. These convolutional layers maintain the same input
and output resolutions, and do not perform any downsam-
pling or pooling operations. They are responsible for the
core task of canceling the moiré effect associated with the
specific frequency band of that branch. Even with the above
multiresolution analysis, this is still a hard task that involves
sophisticated nonlinear transforms. Therefore, we place mul-
tiple convolutional layers (typically 5) each with 3×3 kernels
and 64 channels in this sequence.

To assemble the transformed results from all parallel
branches together into a complete output image, we still need
to increase the resolution of the feature map generated from the
cascaded convolutional layers to the original resolution of the
input image within each branch except for the first one. In the
i-th branch from the top, we use a set of i−1 deconvolutional
layers to achieve this goal. Each deconvolutional layer doubles
the input resolution. There is an extra convolutional layer
following the deconvolutional layers within each branch. This
extra layer generates a feature map with 3 channels only. This
feature map essentially cancels the component of the moiré
pattern (in the input image) associated with the frequency band
of that branch. At the end, the final 3-channel feature maps
from all branches are simply summed together to produce the
final output image with the moiré pattern removed.

In our network, whenever there is a need to reduce the
resolution of a feature map by half, we use a kernel stride 2
instead of a pooling layer. Each layer is followed by a rectified
linear unit (ReLU) and we pad zeros to ensure that the output
of each layer is of desired size. The detailed configurations
of the first two layers and last layers within all branches are
given in Table. I and Table. II, respectively.

a) Remarks.: Our deep network is designed on the basis
of the key characteristics of moiré patterns, which exhibit
features across a wide range of frequencies. A moiré pattern
is typically spatially varying and spreads over an entire image.
If a network deals with fine-scale features only, low-frequency
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Fig. 3. The architecture of our multiresolution fully convolutional network. The top row in (c) shows intermediate images produced from the second to fifth
network branch, and the bottom row shows the same images with amplified intensity.

TABLE I
DOWNSAMPLING LAYERS

Scale Kernel Stride Channels

1 3x3 1x1 32
1 3x3 1x1 32
2 3x3 2x2 32
2 3x3 1x1 64
3 3x3 2x2 64
3 3x3 1x1 64
4 3x3 2x2 64
4 3x3 1x1 64
5 3x3 2x2 64
5 3x3 1x1 64

TABLE II
UPSAMPLING LAYERS

Scale Type Kernel Stride Channels

1 conv 3x3 1x1 3
2 deconv 4x4 2x2 32

conv 3x3 1x1 3
3 deconv 4x4 2x2 64

deconv 4x4 2x2 32
conv 3x3 1x1 3

4 deconv 4x4 2x2 64
deconv 4x4 2x2 32
deconv 4x4 2x2 32
conv 3x3 1x1 3

5 deconv 4x4 2x2 64
deconv 4x4 2x2 32
deconv 4x4 2x2 32
deconv 4x4 2x2 32
conv 3x3 1x1 3

components of the moiré pattern cannot be removed; if it
deals with coarse-scale features only, high-frequency features
of the moiré pattern cannot be removed. For these reasons,
we perform a multiresolution analysis of the input image
and remove the component of the moiré pattern within every
frequency band separately.

In Fig. 3, we illustrate how our network removes a moiré
pattern from a contaminated image. The network branch for
the original resolution (the finest scale) plays a dominant
role because pixel colours in the final output image mostly
come from this branch. We can see that moiré artefacts have
not been completely removed in the 3-channel feature map
produced from the last layer of the top branch (Fig. 3(b))

though such artefacts have become much weaker than those
in the original input (Fig. 3(a)). Network branches for other
coarser resolutions play a supporting role. The last layer of
each coarser-resolution branch produces an image that aims
to cancel the remaining moiré pattern (in the image produced
from the last layer of the top branch) which falls into its
frequency band (Fig. 3(c)). When images from all the branches
are summed together, the remaining artefacts in the image
from the top branch can be successfully eliminated (Fig. 3(d)).

B. Network Training
We train our deep network using a dataset of images,

D = {(Ii, Oi)}, where Ii is an image contaminated with
a moiré pattern and Oi is its corresponding ground-truth
uncontaminated image. The training process solves for weights
w and biases b in our network via minimising the following
l2 loss defined on image patches of size p×p from the training
set D in an end-to-end fashion:

L({w,b}) = 1

N

N∑
i=1

||Si − Ti||2, (1)

where N is the total number of image patch pairs and (Si, Ti)
is a pair of patches.

IV. DATASET

We create a benchmark of 135, 000 image pairs, each
containing an image contaminated with a moiré pattern and
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its corresponding uncontaminated reference image. The con-
taminated images have a wide variety of moiré effects (Fig.
4). The uncontaminated reference images in our benchmark
come from the 100,000 validation images and 50,000 testing
images of the ImageNet ISVRC 2012 dataset. Of the 135,000
pairs of images, 90% are used as the training set and 10%
are used for validation and testing. The pipeline to collect this
data is shown in Fig. 5, which mainly consists of two steps:
image capture and alignment.

a) Image Capture: Each reference image is enhanced
with a black border and displayed at the centre of a computer
screen (Fig. 5(a)). The reason to use black for the border is
that we observe dark colours are least affected by the moiré
effect. To increase the number of corner points that can be
used during image alignment, we further extrude a black block
from every edge of the black border. We then fill the rest of
the screen outside the black border (and blocks) with pure
white, which enables us to easily detect the black border in the
captured images. We capture displayed images using a mobile
phone (Fig. 5(d)). During image acquisition, we randomly
change the distance and angle between the mobile phone and
the computer screen. Note that we require the black image
borders to be always captured.

Detailed information of the phone models and the monitor
screens is shown in Table III and Table IV, respectively. For
each combination of phone model and screen, we collected
15,000 pairs of images. Thus, we collected 15, 000 × 9 =
135, 000 image pairs in total. Using different phone models as
our capture devices ensures that moiré patterns are captured
across different optical sensors while the diversity of display
screens exhibits the difference in screen resolution.

b) Image Alignment: The prepared reference images and
their corresponding captured images contaminated with moiré
patterns have different resolutions and perspective distortions.
To train our deep network in an end-to-end manner, we need
to register them.

In practice, we rely on the corners along the black im-
age border to accomplish image alignment. Since we use a
flat computer screen, the four corners of a captured image
(excluding the blocks extruded from the border) lie on a

Fig. 4. Examples of image pairs from our dataset. From left to right: images
are contaminated by stripe, dot and curved moiré patterns respectively.

(a) Reference image (T) (b) Sorted Corners of T (c) Registered T

(d) Moiré Photo (S) (e) Sorted Corners of S (f) Registered S

Fig. 5. Image Acquisition.

plane. So do the four corners of the prepared reference image.
Therefore, corresponding points in both the captured image
and reference image are associated via a homography, which
can be represented with a 3×3 projective matrix with 8 degrees
of freedom. The four black blocks we attached to the image
border increase the number of non-collinear corresponding
points from 4 to 20, which can improve the registration
precision. We use these 20 corners to compute the projective
matrix and further align every pair of images.

To detect the corners, we convert the images into binary
images and search for corners along the outermost boundary of
the black image border. Traditional corner detection methods,
such as the Harris corner detector [30], can faithfully detect all
corners in a target image (Fig. 6(a)). However, because of the
presence of moiré artefacts, they fail to robustly find the 20
corresponding corners in the source image (Fig. 6(b)), where
certain edge pixels can be falsely detected as corners.

To eliminate such false corners, we check the ratio between
the numbers of black pixels and white pixels in a square
neighbourhood around each detected corner. Since each corner
forms a right angle, ideally, the ratio between the numbers of

TABLE III
PHONE MODEL SPECIFICATIONS

Manufacturer Model Camera

APPLE iPhone 6 8MP

SAMSUNG Galaxy S7 Edge 12MP

SONY Xperia Z5 Premium Dual 23MP

TABLE IV
DISPLAY SCREEN SPECIFICATIONS

Manufacturer Model Resolution Size (inch)

APPLE Macbook Pro Retina 2560× 1600 13.3”

DELL U2410 LCD 1920× 1200 24”

DELL SE198WFP LCD 1280× 800 19”
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(a) Detected corners of T (b) Detected corners of S (c) Cleaned corners of S

Fig. 6. Corner Detection and Clearance.

(a) Moiré 19.9 (b) GT (c) Moiré 21.3 (d) GT

Fig. 7. PSNR cannot fully reflect the degree of moiré patterns. An image
corrupted by visually more severe moiré patterns can have higher PSNR.

black and white pixels should be either 3 or 1/3. According
to this observation, we filter out false corners, where the
ratio between the numbers of black and white pixels in a
square neighbourhood is clearly different from 3 or 1/3. In
practice, we set the neighbourhood size to 11×11. To remove
duplicate corners, we set a minimum distance between two
distinct corners. When the pairwise distances among two or
more detected corners fall below this threshold, we only keep
one of them. As shown in Fig. 6(c), these twenty corners can
be successfully detected.

Finally, with the computed projective matrix, we can align
every image pair. The registration results are demonstrated in
Fig. 5(c) and 5(f).

c) Automatic Verification: To automatically verify
whether a registration result is correct or not, we measure
the PSNR of the registered image pair and use a threshold
η to screen the PSNR value. In our experiments, we set
η = 12. we have found that even images with the most severe
moiré artefacts achieve PSNR values higher than 12dB while
false registrations produce PSNR values lower than 10dB. The
quality distribution of moiré photos in our dataset is shown in
Fig. 8.

However, note that PSNR cannot fully reflect the severity
of the moiré effect. As shown in Fig. 7, an image corrupted
by a visually more severe moiré pattern actually achieves a
higher PSNR. This is perhaps because the colour bands in a
moiré pattern do not significantly affect PSNR even though
they are visually disturbing and easily noticeable.

d) Setup: During image acquisition, images are dis-
played on the screen consecutively. Each reference image stays

Fig. 8. The quality distribution of moiré photos in the entire dataset. The
quality of a moiré photo with respect to its corresponding reference image is
measured using PSNR (dB).

on the screen for 0.3 seconds. We use a mobile phone to record
a video of the consecutively displayed images. Frames from
the captured video are then retrieved as images contaminated
with moiré patterns.

V. MODEL UNDERSTANDING AND IMPLEMENTATION

A. Insights Behind Our Network Design

Moiré patterns span a wide range in both spatial and
frequency domains. Therefore, we conceive a multi-resolution
architecture, which has convolutional layers with multi-scale
receptive fields, to tackle this problem. At the beginning,
we experimented with U-Net [31] with skip connections.
Skip connections have been proven to be effective in high-
level vision tasks, such as image recognition and semantic
segmentation. However, when tackling low-level vision prob-
lems, including super-resolution, denoising and deblurring,
many approaches can produce state-of-the-art results without
skip connections, such as VDSR, DnCNN and PyramidCNN.
In high-level vision problems, the information from high-
resolution layers close to the input image is useful for the
additional clues they introduce. Different from other tasks
making use of networks with skip connections, moiré photos
and their corresponding ground-truth images can differ dra-
matically, and thus, skip connections are not powerful enough
to model such differences. In addition, the layer closer to
the input image in a skip connection contains serious moiré
artefacts, as shown in the top row of Fig. 10, while the feature
maps produced by the deeper layer are relatively moiré-free.
As a result, directly using high-frequency details from a layer
closer to the input image would likely introduce artefacts in
the final result.

PyramidCNN [29] also adopts a multi-resolution architec-
ture for deblurring. In their architecture, an input image is
first downsampled to k resolutions linearly and then network
branches for different resolutions are trained simultaneously.
For the task of deblurring, coarser level output guides the
training process of finer level network branches. But for
moiré pattern removal, the output from coarser levels is not
completely free of moiré artefacts, which tend to make finer
levels maintain such artefacts.
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(a) Input (b) Finest Scale (c) Scale 2 to 5 (d) Output

Fig. 9. Visualisation of the 3-channel feature maps produced by different branches on a “grayscale-like” RGB image and its corresponding pure grayscale
image. For each input, the top row in (c) shows the intermediate images produced from the second to the fifth network branch, and the bottom row shows
the same images with amplified intensity.

Fig. 10. Visualisation of U-Net feature maps. (Top) Feature maps produced
by a layer A closer to the input image. (Bottom) Feature maps produced by
a deeper layer B. Layer A is skipped connected to layer B.

To achieve better performance, we embed a multi-resolution
pyramid in our network architecture. In contrast to tradi-
tional image pyramids built with linear filtering, the image
pyramid in our architecture is actually built with nonlinear
filtering because nonlinear activation always follows each
convolutional layer. The nonlinearity in our pyramid allows
the network to perform more effectively during downsampling.
More importantly, in our network, each resolution is associated
with a network branch with six stacked convolutional layers
maintaining the same resolution. Such network branches are
capable of performing sophisticated nonlinear transformations
(such as removing moiré artefacts within a specific frequency
band), and are more powerful than skip connections in U-Net.

B. A Detailed Study on Our Proposed Model

To show the advantage of the proposed model, we attempt
to test different variants. Model specifications are given as
follows:

• V Concate (27.12dB): replacing the sum operation with
concatenation. To be specific, we concatenate the 32 fea-
ture maps from each scale, and append two convolutional

layers after the concatenated feature maps. Each of these
convolutional layers has 32 channels and 3× 3 kernels.

• V Skip (26.36dB): in each scale, skip connecting the
second downsampling layer to the last convolutional layer
before the upsampling layers.

• V C32 (25.52dB): replacing all the 64-channel convolu-
tion filters with 32 channel convolutional filters.

• V B123 (25.28dB): using branch 1, 2 and 3 only.
• V B135 (26.04dB): using branch 1, 3 and 5 only.
• V B15 (25.52dB): using branch 1 and 5 only.

We will demonstrate later that although V Concate achieves a
higher PSNR score on the test data, it produces worse visual
results than our proposed network. Adding skip connections
cannot further improve the performance of the proposed model
while the other variants degrade the performance.

C. Grayscale Moiré Artefacts

To verify that our model can remove moiré patterns rather
than the unnatural colours, we convert the RGB dataset to a
grayscale one and retrain the network. The average PSNR,
SSIM and FSIM on the grayscale testing set are 27.26, 0.852,
and 0.910, respectively, indicating that our model is able to
deal with moiré patterns regardless of the colour information.
Intermediate images produced from different branches on a
test RGB image that is close to a grayscale one as well
as those produced on its corresponding grayscale image are
demonstrated in Fig. 9.

D. Implementation

We have fully implemented our proposed deep multireso-
lution network using CAFFE on an NVIDIA Geforce 1080
GPU. The entire training process takes 3 days on average. We
use a mini-batch size of 8, start with learning rate 0.0001, set
the weight decay to 0.00001, and minimize the loss function
using Adam [34]. We have found that the training process
could not converge properly with a higher learning rate. As
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TABLE V
A QUANTITATIVE COMPARISON AMONG PARTICIPATING METHODS ON OUR TEST SET WITH DIFFERENT METRICS. OUR METHOD CLEARLY OUTPERFORMS

THE OTHER METHODS.

Corrected Input RTV [2] SDF [28] IRCNN [10] DnCNN [9] VDSR [7] PyramidCNN [29] U-Net [31] V Concate Our method

PSNR Mean (dB) 20.30 20.67 20.88 21.01 24.54 24.68 25.39 26.49 27.12 26.77

PSNR Gain (dB) - 0.37 0.58 0.71 4.24 4.38 5.09 6.19 7.09 6.47

Ave Error (×10−3) 34 31 30 28.32 5.82 5.74 4.83 3.81 3.36 3.62

SSIM [32] 0.738 - - - 0.834 0.837 0.859 0.864 0.878 0.871

FSIM [33] 0.869 - - - 0.901 0.902 0.909 0.912 0.922 0.914

the training process proceeds, we reduce the learning rate by a
factor of 10 when the loss on a validation set stops decreasing.
In all the experiments in this paper, we set the patch size p×p
to 256 × 256. The network weights are randomly initialised
using a Gaussian with a zero mean and a standard deviation
equal to 0.01. The bias in each neuron is initialised to 0.

VI. COMPARISON AND DISCUSSION

In this section, we experimentally analyse our method’s
capability in improving image quality and removing moiré
artefacts. Since we are not aware of any existing meth-
ods that solve exactly the same problem, we compare our
method against state-of-the-art methods in related image
restoration problems, including image denoising, deblurring,
super-resolution and texture removal. We choose VDSR [7]
as a representative from image super-resolution algorithms,
DnCNN [9] and IRCNN [10] from the latest image denoising
methods, and RTV [2] and SDF [28] among texture removal
techniques. For that a subset of the moiré photos in our
dataset has a certain degree of blurriness and that deblurring
techniques can reconstruct high-frequency details, we also add
two latest learning based image deblurring techniques, multi-
scale pyramidCNN [29] and IRCNN [10], for comparison.
Moreover, since we adopt a hierarchical network architecture,
we also compare our network with U-Net [31], an effective
neural network for image segmentation.

To perform a fair comparison, we tune the parameters of the
methods we compare against so that they reach the optimal
performance on our dataset. When a method only has a small
number of tuneable parameters, we tune those parameters to
make the method achieve the lowest average error on our test
set. When a method has a large number of parameters, such as
learning based methods, we retrain the model in the method
using our training set.

Even though descreening methods aim at removing a dif-
ferent and simpler moiré effect that occurs in scanned copies
of printed documents and images, they are certainly relevant.
Since such methods are relatively mature and have been
integrated into commercial software, we choose to compare
with the descreening function in Photoshop.

A. Quantitative Comparison

In Fig. 11 and Table V, we demonstrate the quantitative
performance of different methods on our test set. Since the
contaminated image and the reference image within the same
pair have different average intensity levels due to multiple

Fig. 11. Average pixel-wise MSE error of various methods vs. the number
of epochs.

reasons, including the brightness of the computer screen and
the intensity response curve of the camera during image
acquisition, that are mostly irrelevant to the moiré effect, we
decided to factor out the differences in average intensity by
adjusting the average intensity of the contaminated image to be
the same as that of the reference image (Corrected Input). As
shown, our method and the variant of our model, V Concate,
outperform all other methods participating in the comparison
on all performance measures, including PSNR, SSIM [32] and
FSIM [33]. As the parameters for descreening in Photoshop
have to be adjusted manually for each image, we cannot show
the average performance on the entire test set. However, we
will qualitatively compare it with our method in the next
section.

Effective as a super-resolution method, VDSR [7] delivers a
reasonable performance but is unable to fully handle the com-
plex moiré effect. Using a configuration with a large receptive
field, the denoising network (DnCNN) in [9] has a similar
performance as VDSR [7]. Both VDSR and DnCNN adopt
a flat CNN architecture that maintains the same resolution
across all layers. Nonetheless, both of them have been clearly
outperformed by our multiresolution network.

By defining a denoising prior with dilated convolutions,
IRCNN [10] outperforms state-of-the-art methods in pixel-
wise image restoration tasks. However, it performs poorly on
our dataset and its training process can hardly converge on our
training set. After modifying IRCNN by interleaving ordinary
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(a) Input 17.7 (b) RTV 17.6 (c) SDF 17.5 (d) Descreen 17.3 (e) IRCNN 18.8 (f) U-Net 22.7

(g) VDSR 22.9 (h) DnCNN 22.2 (i) PyramidCNN 22.2 (j) V Concate 24.9 (k) Our method 24.6 (l) Ground Truth

(a) Input 21.8 (b) RTV 21.1 (c) SDF 21.4 (d) Descreen 20.0 (e) IRCNN 22.1 (f) U-Net 27.2

(g) VDSR 22.5 (h) DnCNN 23.1 (i) PyramidCNN 24.6 (j) V Concate 28.3 (k) Our method 27.6 (l) Ground Truth

Fig. 12. Comparison between our multiresolution deep network and other state-of-the-art methods for image restoration, including Photoshop Descreen,
IRCNN [10], U-Net [31], VDSR [7], DnCNN [9], pyramidCNN [29], RTV [2] and SDF [28].

convolutions and dilated convolutions, we obtain a revised
model called IRCNN-IL. The convergence issue is resolved in
the revised model but its performance is still not satisfactory.
The PSNR, SSIM and FSIM achieved by IRCNN-IL are 21.55,
0.744, and 0.870, respectively. In theory, the noise IRCNN
aims to deal with is completely different from the moiré
patterns we attempt to remove. A noisy image is commonly
modelled as the result of an additive process, which adds noise
to the original signal, but a moiré pattern is a phenomenon
caused by light interference, which is a different and much
more complicated process. Dilated kernels can remove additive
noises but might be insufficient to remove complex moiré
patterns. Due to the different underlying mechanisms of image
noises and moiré patterns, one cannot be certain that IRCNN
is effective for restoring moiré photos.

Nah et al. [29] deblur images bottom up using a multires-
olution Gaussian pyramid. It first deblurs an image in 1/2i

resolution, then in 1/2i−1 resolution and finally in the full
resolution. The multiresolution architecture helps to produce
acceptable results. However, unlike our multiresolution pyra-
mid generated from trainable nonlinear filters (convolutional
kernels), their pyramid is generated using the fixed Gaussian
filter, which is linear. As shown in Fig. 11 and Table V, our

network architecture delivers clearly better performance.
Among all the methods, U-Net [31] achieves a numeri-

cal performance closest to our method. However, we found
that even though U-Net produces good statistics, it delivers
relatively poor visual results, which will be demonstrated in
visual comparisons. Likewise, V Concate produces the highest
score on all metrics but its ability in visually removing moiré
patterns is less than the original model.

Texture removal techniques, RTV [2] and SDF [28], are
useful in preserving important image structures while elimi-
nating small repetitive textural details. But image features at
a similar scale of texture elements would be removed as well.
In our context, these techniques are used for removing moiré
patterns, and they give a poor performance on this task. The
difficulty in setting an appropriate texture kernel size could be
the main reason because a large smoothing and texture kernel
would over-smooth the image while a small kernel would not
be able to remove low-frequency large-scale moiré artefacts.

B. Visual Comparisons

We visually compare results from our method against those
from other state-of-the-art methods in Fig. 12. Additional
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(a) Input 16.1 (b) U-Net [31] 26.2 (c) Our method 26.0

Fig. 13. Another example in which U-Net [31] produces a higher PSNR score
but a worse moiré removal effect.

visual comparisons can be found in the supplemental mate-
rials. Note that the input images are all from the test set.
From these comparisons, we have the following observations.
RTV [2] and SDF [28] remove small-scale texture features
which typically have higher frequencies than moiré patterns.
Descreening in Photoshop over-smoothes the input image.
Among deep learning based methods, IRCNN [10] is unable
to remove moiré patterns at all even though its network has
been re-trained using our training set. Meanwhile, VDSR [7],
PyramidCNN [29], and DnCNN [9] have a better performance.
However, colour distortion is still noticeable in their results.

Except for our methods, U-Net [31] achieves the highest
scores of all quality measures. But more moiré artefacts remain
in its results than in the results of VDSR [7] and DnCNN [9].
As we have stated earlier, even though a quality measure,
such as PSNR, can measure the overall image quality, it
cannot precisely measure the effectiveness in moiré pattern
removal. We show an example in Fig. 13 and the supplemental
materials that U-Net [31] produces higher PSNRs but worse
visual results. Our method has the most powerful network
architecture and produces output images closest to the ground-
truth reference images.

Additional visual results from our method are shown in
Fig. 19, where the input images exhibit a variety of different
moiré patterns.

C. The Number of Variables

As shown in Table. VI, the number of variables in our
method is in the same order as U-Net and PyramidCNN while
our proposed network outperforms both of them qualitatively
and quantitatively. Variants of our model, V B15 and V C32,
have a similar number of parameters as VDSR and DnCNN,
however produce higher PSNR scores.

TABLE VI
THE NUMBER OF VARIABLES IN LEARNING BASED APPROACHES (×105).

V B123 V B15 V C32 V Concate Our method
# var 9.28 7.42 4.11 16.14 15.44

IRCNN-IL VDSR DnCNN PyramidCNN U-Net
# var 3.35 6.67 7.04 14.15 24.62

D. User Study

Due to the limitation of image metrics in measuring moiré
artefacts, we have also conducted a user study to compare

different methods, which includes 20 questions. Each question
consists of six randomly ordered results, generated by VDSR,
DnCNN, PyramidCNN, U-Net, V Concate and our method,
on a randomly selected test image. 60 participants have to
choose 1 to 2 images that they perceive most appealing
and comfortable. After averaging the votes from all the 20
questions, we obtain the statistics in Fig. 14. It is clear that
the proposed model is more preferable to the human visual
system, although U-Net and V Concate achieve high scores
under certain numerical image quality measures.

Fundraiser Results by Salesperson

PARTICIPANT UNITS SOLD

VDSR 0

DnCNN 0

PyramidCNN 0

Unet 0

PARTICIPANT

User Study on Moire Pattern Restoration

0.00

0.15

0.30

0.45

0.60

VDSR DnCNN PyramidCNN Unet V_Concate Our Method

54.55%

35%

14%

25%

13.49%13%

�1

Fig. 14. User study on moiré pattern restoration.

VII. MODEL VERSATILITY

A. Cross-Data Evaluation

We quantitatively measure our model versatility by training
and testing on data collected with different phone models
or digital monitors. We perform three experiments, including
testing on images taken with an iPhone on a Mac 2560 screen,
with a SamSung S7 on a Dell 1920 monitor, and with a Sony
Z5 on a Dell 1280 display, respectively. Note that in each
experiment, the test data is excluded during training process.
The performance is demonstrated in Table. VII. Though the
performance is not as good as before, our model can still
produce reasonable results. We also observe that the quality
improvement by our model is most noticeable when the input
(moiré) images are in low quality, such as the images captured
with the Sony Z5 on the DELL 1280 screen.

TABLE VII
CROSS-DATA EVALUATION.

Test Data\Metrics PSNR SSIM FSIM
Input Result Input Result Input Result

iPhone Mac2560 23.09 25.18 0.840 0.862 0.914 0.930
SamSung Dell1920 18.34 20.84 0.594 0.636 0.833 0.870

Sony Dell1280 16.33 23.28 0.706 0.822 0.856 0.898

a) Test on phone model HUAWEI P9: Though the camera
sensors in different phone models are different, the underlying
reason for the formation of moiré patterns is similar on differ-
ent phones. To test the versatility of our network, we run our
network directly on moiré photos captured by another phone
model, that is not used in collecting our dataset, HUAWEI
P9. Decent results have been achieved, as shown in Fig. 15
and the supplemental materials. This indicates that our trained
network can be used for removing moiré patterns in images
captured by other phone models.
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(a) HUAWEI P9 (b) Our result (c) HUAWEI P9 (d) Our result

Fig. 15. Restoration of moiré photos taken with HUAWEI P9. Our model is
not fine-tuned for this phone model.

B. Restore Partial Moiré Photos

a) Synthesised moiré images: Moiré patterns on an im-
age can be spatially varying, strong in a region and weak
in another region. Under extreme conditions, moiré patterns
can only appear in part of an image. In Fig. 16, we show
our results on synthesised partial moiré images, where only a
small portion of the image contains moiré artefacts.

(a) Input (b) Our Result (c) Input (d) Our result

Fig. 16. Test on synthesised images contaminated by moiré patterns in a
small region.

b) Real world moiré patterns not caused by display:
When searching the Internet for “moiré photos”, we find
that moiré patterns most commonly appear on fine repetitive
patterns, such as textile textures on clothes and buildings. In
Fig. 17, we show the results of directly applying our trained
model without fine-tuning on Internet images damaged by
moiré artefacts. Though the moiré is caused by the repetition
of the fine patterns rather than digital display, our model is
able to reduce such moiré patterns as well.

(a) Input (b) Input-CloseUp (c) Our result

Fig. 17. Reduce moiré artefacts on Internet images without fine-tuning.
Image courtesy @Fstoppers user Peter House and @Travel-Images.com user
A.Bartel, respectively.

VIII. LIMITATIONS

When a moiré pattern exhibits very severe large-scale
coloured bands, our method might not be able to infer the
uncontaminated image correctly. We show a failure case in
Fig. 18.

Another limitation is that our model could not clearly reduce
blurriness in the input images. Note that other baseline algo-
rithms, including the image deblurring model PyramidCNN,
are not able to resolve it either (Fig. 12). We believe that such
blurriness is introduced into a subset of acquired photos in
our dataset because of multiple reasons, including motion blur
due to the movement of the camera during image acquisition,
the imperfect image alignment during pre-processing, and
the damaged high-frequency components caused by high-
frequency moiré patterns. Although our algorithm can faith-
fully detect all 20 corner points, moiré patterns can interfere
with their exact localisation, giving rise to imperfect align-
ment.

(a) Input (b) Our method (c) Ground truth

Fig. 18. A failure example.

IX. CONCLUSION AND FUTURE WORK

To conclude, we presented a novel multiresolution fully
convolutional network for automatically removing moiré pat-
terns from photos as well as created a large-scale benchmark
with 100, 000+ image pairs to evaluate moiré pattern removal
algorithms. Although a moiré pattern can span over a wide
range of frequencies, our proposed network is able to remove
moiré artefacts within every frequency band thanks to the non-
linear multiresolution analysis of the moiré photos. We believe
that people would like to use their mobile phones to record
content on screens for more reasons than expected, such as
convenience, simplicity, and efficiency. The proposed method
and the collected large-scale benchmark together provide a
decent solution to the moiré photo restoration problem.

In the future, we would like to explore different categories
of moiré patterns and improve our method so that it can
eliminate moiré artefacts according to their category labels.
Moreover, it will be interesting to investigate the existence of
an indicator that can better describe the level of moiré artefacts
and guide the training process. We also plan to keep expanding
our dataset by adding more examples under different shooting
conditions and for different types of device screens. We believe
that with a larger dataset, our method can produce even better
results.
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(a) Input (b) Our Result (c) Ground Truth (d) Input (e) Our Result (f) Ground Truth

Fig. 19. Input images contaminated with different types of moiré patterns and their corresponding cleaned results from our proposed method. In this figure,
we intentionally show some brighter images, where moiré patterns are more noticeable.
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