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Abstract. Image tagging has attracted much research interest due to its
wide applications. Many existing methods have gained impressive results,
however, they have two main limitations: 1) only focus on tagging im-
ages, but ignore the tags’ influences on visual feature modeling. 2) model
the tag correlation without considering visual contents of image. In this
paper, we propose a joint visual-semantic propagation model (JVSP)
to address these two issues. First, we leverage a joint visual-semantic
modeling to harvest integrated features which can accurately reflect the
relationship between tags and image regions. Second, we introduce a
visual-guided LSTM to capture the co-occurrence relation of the tags.
Third, we also design a diversity loss to enforce that our model learns
to focus on different regions. Experimental results on three challenging
datasets demonstrate that our proposed method leads to significant per-
formance gains over existing methods.
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1 Introduction

Automatic image tagging aims to associate images with appropriate tags which
reflect visual contents in the image. The problem is difficult because every real-
world image usually contains multiple labels and has intricately spatial layout.
Since the scale of visual data is growing fast and manually tagging images is
expensive and time-consuming, there is a huge demand for image tagging.
Every tag is closely related to specific region of image. Modeling the connec-
tion between the tag and corresponding image region plays an important role
in image tagging. Existing methods that model the relationship between images
and tags can be roughly divided into parametric and non-parametric methods.
One of the most popular parametric methods is the generative model [1], which is
usually dedicated to maximize generative likelihood of image features and tags.
On the other hand, many non-parametric nearest neighbor models [13] have been
proposed. They transfer tags from nearest neighbor images to the query image
based on the assumption that visually similar images are more likely to share
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common labels. However, most existing approaches leave the tag information in
the input feature space untouched and ignore the tags’ influences on visual fea-
ture modeling. They are not rich enough to mine the complicated relationships
between local image regions and tags. Moreover, different regions of the image
have different weights with respect to different tags. Without considering tags’
effect, these methods giving whole image the same weights are hard to recognize
some objects, especially some small objects.

There is an observation that the tags associated with natural images do not
appear in isolation, they appear correlatively and interact with each other. We
refer it as tag correlation. For instance, the probability of an image being labeled
with “sea” would be high if the image has been annotated with “boat” and “is-
land”. Instead of simply learning independent binary classifiers for each tag,
many methods try to exploit tag correlation for improving tagging performance.
These methods consider the tag correlation as additional information, which can
be learned via sparse learning [1], graphical model [11], or dictionary learning
[14]. However, two main drawbacks of these models mining the tag correlation
need to be concerned. First, they explore the tag correlation in semantic level
without considering visual contents of image. This manner causes the tag corre-
lation less flexible when recognizing particular image, and has a negative effect if
there exists remarkable tag correlation discrepancy between the training and test
sets. Second, due to huge computational complexity, most methods only model
the pairwise tag correlation rather than long range correlation among tags. It
can not be able to well capture the intricate tag correlation.

Inspired by the great success from convolutional neural network (CNN) in
image classification [5], many methods try to extend the CNN to multi-label
image tagging [7]. In addition, recurrent neural networks have proven to be able
to model the long range temporal dependencies [17]. Therefore, recent works
[8] try to employ the RNN to model tag correlation for multi-label problem.
However, these methods also suffer from aforementioned problems, including
leaving the relationship between tags and visual features untouched in the input
feature space and ignoring the effects of visual contents in the image during tag
correlation exploitation.

In this paper, we propose a joint visual-semantic propagation (JVSP) model
to address the foregoing problems. First, to sufficiently exploit the tag informa-
tion in the input feature space, we introduce a joint visual-semantic modeling to
explore the tag representation and visual features, and make them benefit from
each other in a collaborative way. There are two steps in this process: 1) we in-
corporate the tag embedding into image features to obtain the integrated visual
features, which characterize the relationship between tag and corresponding im-
age region. 2) based on step one, we in turn refine the tag representation by fusing
the integrated visual features into tag embedding. The refined tag representation
will be less ambiguous and have a stronger connection with visual content of the
image. Second, we introduce a visual-guided LSTM to model the tag correlation.
Unlike previous methods that model tag correlation without considering image
contents, we leverage the integrated visual features as an instruction, and feed
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it into LSTM with refined tag representation together to capture the complex
correlation among tags. Third, we design a diversity loss to enforce the proposed
model concentrates on different image regions for extracting more discrimina-
tive features with respect to different labels. Finally, in this way, we cast the
image tagging task into a visual-semantic propagation problem. Based on cor-
responding image regions and tag relation, we can propagate multiple tags by
the visual-guided LSTM in an iterative way. We conduct extensive experiments
on three large-scale datasets, showing that JVSP consistently outperforms the
existing methods.

Joint Visual-Semantic Modeling Tag Propagation

<STA>
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Fig. 1. Schematic of the proposed model. We unfold a complete tag propagation pro-
cedure of a two-label image to get three steps. As the pipeline shows, our model first
extracts the image features from CNN and computes the tag embedding, then the joint
visual-semantic modeling explores and integrates both of them. Finally, the visual-
guided LSTM is applied to model the tag correlation and perform the tag propagation.
In this way, we build an automatic framework to propagate tags in an iterative manner.

2 Proposed Method

We show an example pipeline of the proposed model in Figure 1. As shown in
Figure 1, the overall architecture of the model consists of three components:
feature extraction, joint visual-semantic modeling, and tag propagation.

2.1 Joint Visual-Semantic Modeling

To overcome the issue existing in most previous methods: ignoring the effect
of tags on image feature representation, we introduce the joint visual-semantic
modeling. Figure 2 describes the detailed structure of the joint visual-semantic
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Fig. 2. The details of the joint visual-semantic modeling (bottom panel) and tag prop-
agation (top panel).

modeling and tag propagation module. At time step ¢, a tag k is represented
as a one-hot vector eg. There are two different tag embedding matrices, U; and
Uy. Tag embeddings can be obtained by multiplying these two tag embedding
matrices.

wy = Ueg,wy = Uyey, (1)

where wy, is used as the semantic guidance and wy is applied to form the refined
tag representation.

Since one tag propagation relies on its predecessors and the effect of previous
tags is getting weaker and weaker with time steps, we introduce the knowledge
guidance, which consists of preceding hidden states h; (from step 1 to step t—1)
to enhance the role of previous tags. It is beneficial to generate the semantic
guidance for current tag. The knowledge guidance is defined as follows:

t—1
1
K; = m(Wh ; Aihi) (2)

Where )\; is the maximum tag probability at time step i. Learnable matrix W},
is used to embed the knowledge guidance into the same vector space as wy. We
then obtain the semantic guidance vector g;:

gt = w + Ky (3)

We regard the semantic guidance as a weighted mask, and then earn the
integrated image features by following function:

Vi =o(C(I) © g1) (4)

where V; is the integrated image features at time step ¢, and C(I) is the original
image features extracted from CNN. ® represents the element-wise multiplica-
tion, and @(-) denotes a non-linear transfer function, i.e., Softmax, which is
chosen based on cross-validation. As shown in Figure 2, the integrated image
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features have high activations on specific regions of image under the semantic
guidance.

After generating integrated image features, we in turn utilize it to refine the
tag embedding. The operation can be expressed in the following steps:

Gp = W, tanh(wy + Uy V) (5)
T = &(wy © ge) (6)

where U;; and Wy; are learnable weight matrices. V; is the integrated image
features obtained from Eq. 4. Furthermore, V; is a visual guidance to refine
the tag embedding. For a label of multiple senses, e.g., “mouse”, the direct tag
embedding will always project it into same vector regardless of its senses in the
image. In contrast, V; can guide the tag embedding with its real senses in the
image because of the differences in visual features. Thus, we get the weighted
vector g; by incorporating the integrated image features. We also apply dropout
on U4 V4 in the training phase to overcome overfitting problem. Then we compute
the refined tag representation T; according to Eq. 6.

Finally, we combine the integrated image features and refined tag represen-
tation into a feature concatenation.

Xy =[Vi, T (7)

where [-] is the concatenation operation on two vectors.

2.2 Tag Propagation by Visual-Guided LSTM

Unlike the normal LSTM which only takes the text representation as the input,
we introduce a visual-guided LSTM, which accepts the integrated image features
as the guidance in both the input and output space to instruct the tag prop-
agation. [17] points out that as the time step continues, the generation result
of LSTM becomes “blind”, for the reason that the role of image representation,
which is only fed once at the beginning, becomes weaker and weaker. To figure
out this problem, they extend the LSTM with semantic information which is a
global guidance and does not change with time step. In our model, we employ
the integrated image features as the visual guidance and feed it into LSTM at
each time step. More importantly, the visual guidance is different from the global
guidance mentioned above because it is relevant to current tag which is varying
with time step.

The visual-guided LSTM neuron in our implementation is illustrated in the
top panel of Figure 2. The interaction between states and gates is defined as
follows:

it = o(Wi, Vi + Wi Ty + Winhi—1)
fr = oW Vi + W Ty + Wenhe—1)
or = o(Woo Vi + Woi Ty + Wonhi—1)
et =ft@cio1+1 ©0(We Vi

+ Weily + Wenhi—1)
he = 0y ® 6(ct)
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where i; stands for the input gate, f; for the forget gate, o; for the output gate.
¢; denotes the state of the memory cell and h; encodes the hidden state. All these
variables are the key points to learn long-term correlation. o(-) represents the
sigmoid function and d(-) denotes the hyperbolic tangent function. W[, stand
for the learnable weight matrices. The visual guidance V; is the integrated image
features, and T; is the refined tag representation. Both of them are obtained
from E.q 7.

The visual-guided LSTM generates label scores based on the hidden state Ay
and visual guidance V;. As the visual guidance is capable of describing the high-
level visual concepts from specific regions, it is conducive to the tag prediction.

v = WI(hy +V}) (9)

where y,; represents the score vector of labels at time step ¢ and W is a projection
matrix. The predicted tag probability can be computed using the Softmax on
the score y;.

2.3 Diversity Loss

To make the focused region vary with time steps, we propose the diversity loss
to compute the correlation between neighboring integrated image features:

T M

1
Ly =—— E E Vicii Vi
r-1 t=2 i=1 (10)
st. V., =8

where V;; is the i-th value of the integrated image features at time step ¢. T’
denotes the total number of time steps and M represents the length of integrated
image features. 8 is a given threshold. Values larger than 8 can be regarded
as high activation. In general, £y will get a large value if the focused regions
between two temporally adjacent image features are similar. We then apply
the negative log probability as the classification loss. The final loss function is
obtained by combining both of them:

T .
1
t=1 Zj:l exp(y; )
where y; follows E.q (9) and the formulation of Ly follows E.q (10). g is the
score of the predicted tag at time step t. ¢ is the size of label vocabulary. « is a
constant weighting factor.

3 Experiments

We evaluate our proposed model on three widely used datasets for image tagging:

ESP Game dataset [16], NUS-WIDE dataset [6] and MS-COCO dataset [15].
For fairness of comparison, we follow previous work [13] to evaluate meth-

ods. The precision (P) and recall (R) of all labels are applied as evaluation
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metrics. Based on these two measures, we also compute the Fl-score F'1 =
2% P+ R/(P+ R), which takes care of the trade-off between precision and recall.
Additionally, the number of tags with non-zero recall value (N+) and the mean
average precision (MAP) measure are reported for evaluation.

3.1 Implementation Details

The visual features are extracted from VGG network[3] pretrained on the Ima-
geNet dataset [4]. The dimensionality of image features and tag embedding are
both set to 512. We apply fixed input state dimension of 1024 and hidden state
dimension of 512 for all visual-guided LSTM neurons. Learning rate is scheduled
as 1073 and a staircase weight decay is applied after a few epochs. £, B2 in
adam are set to 0.8 and 0.999. We set the threshold § = 0.01 and the weighting
factor a = 0.5 based on cross-validation. Dropout with rate 0.5 is applied on the
top of output state in the LSTM neuron. For testing images, we annotate each
of them with top k labels.

3.2 Performance on NUS-WIDE

Method | ¢-P CR CFl1 | OP O-R OF1l | MAP
Multi-edge graph|2] - - - 35.0 37.0 36.0 -
KNNI6] 326 193 243 | 429 534 476 -
Softmax 3.7 312 314 | 478 595  53.0 -
WARP[7] 31.7 356 335 | 486 605  53.9 -
CNN-RNN(g] 40.5 304 347 | 499 617 552 | 56.1
JVSP | 331 46.2 385 | 52.9 65.8 58.6 | 68.5

Table 1. Performance evaluation on NUS-WIDE dataset for k& = 3.

NUS-WIDE dataset is widely used as the benchmark for image tagging and
multimedia retrieval due to its large amount of images and high quality anno-
tations. As each label has enough training images, we put the more frequency
tags before the less frequency ones in the training time. Not only the precision
and recall scores (C-P and C-R) over all classes, but we also report the overall
precision (O-P), overall recall (O-R) and overall F1 (O-F1) scores, where the
average is taken over all testing images.

We compare the performance of our method against several state-of-the-art
approaches, i.e. KNN [6], WARP [7], CNN-RNN [8]. Table 1 shows the compar-
ison results. Comparing with these methods using the learning to rank frame-
work i.e. WARP [7], the proposed method obtains superior results in all eval-
uation terms. As compared with [8] that proposes a CNN-RNN based model,
our approach can gain a favorable performance improvement, which indicates
the effectiveness of jointly considering visual features and tag representation. In
particular, we can see our method achieves 16% higher recall and 12% higher
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MAP than the CNN-RNN based method, because our model can focus on lo-
cal image regions to precisely recognize some objects, especially small objects,
which is the key to significantly improve the performance. Furthermore, we also
quantitatively verify the capability of recognizing small objects in Section 3.3.

3.3 Performance on MS-COCO

In the MS-COCO dataset, we view the object annotations as the labels. There
are 80 object types and each label has enough training images, so we use the same
frequent-first strategy as in the NUS-WIDE dataset. As the number of objects
per image varies considerably, we do not set the limitation of minimum & time
steps during tag propagation in the testing stage. We measure the performance
in the same setting as NUS-WIDE dataset.

Table 2 compares the performance of the proposed method to existing ap-
proaches on MS-COCO dataset. Several competitors participate in the com-
parison, including WARP [7], multi-label binary cross entropy, and CNN-RNN
model [8]. From Table 2, it is obvious that the proposed method achieves better
performances compared with other methods.

Method | ¢P CR CF1 | OP O-R OFl | MAP
Softmax 59.0  57.0 580 | 602 621  6L.1 | 474
WARP][7] 59.3 525 557 | 59.8 614 60.7 | 492
Binary cross-entropy 59.3 58.6 58.9 61.7 65.0 63.3 -
No RNN [g] 65.3 545 593 | 685 613 657 | 572
CNN-RNN(8] 66.0 55.6 604 | 692 66.4 678 | 612
JVSP | 67.6 581 625 | 72.3 657 68.8 | 62.7

Table 2. Performance evaluation on MS-COCO dataset.

Most previous methods give the whole image the same weights. This set-
ting harms the performances, especially when the image contains some small
objects. Rather than using the whole image with uniform weights, our model
incorporates tag information into the visual features to highlight different re-
gions conditioned on different tags. To verify the efficiency of recognizing small
objects in our model, we sample some small objects in the MS-COCO dataset,
including “bottle”, “cell phone”, “bowl”, “spoon”, “fork”, “knife” and “mouse”,
then compare their per-class precision and recall scores with the CNN-RNN [8].
The comparison results are shown in Figure 3. It can be observed that JVSP
gains a significant improvement than CNN-RNN [8] among these small objects.

3.4 Performance on ESP Game

ESP Game dataset contains 268 different labels, and some labels include only
less than 100 training images. Since some rare labels are easier to be ignored,
we raise the priority of the rarer labels in the training stage and apply a rare-
first order of labels. For a fair comparison, we annotate each image with 5 tags.
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Fig. 3. Performances on small objects between CNN-RNN [8] and JVSP.

Method [ Features [ P R F1 N+
TagProp[13] HC 39 27 32 239
2PKNNJ[12] HC 51 23 31.7 245

SFR([1] HC 37 24 29 238

SLED[14] HC 49 30 37 253
CNN-R[10] Caffe-Net 44.5 28.5 34.7 248
2PKNN VGG-16 40 23 29 250
RIA [9] VGG-16 32 32 31 249
CCA-KNNJ[10] VGG-16 46 36 40.4 260
JVSP |  VGG-16 | 503 36.4 42.2 258

Table 3. Performance evaluation on ESP Game dataset for k = 5.

Table 3 shows the results of the proposed model and existing approaches on ESP
Game dataset. Comparing with these models [13,12] leaving the tag correlation
untouched, JVSP has gained marked improvement on R, F'1 and N+. Different
from these methods [1,14] which explore tag correlations without studying the
visual contents of image, our model utilizes the visual-guided LSTM to capture
tag co-occurrence correlation. All above methods use the hand-crafted features,
and we also compare with the methods [10,12] which use deep visual features.
We can see our model outperforms all other deep models in most evaluation
terms. Compared with these methods [9] which applied the RNN to model the
tag relation, our proposed model also achieves much better performance since we
consider the tags’ influences on image feature modeling and utilizes the visual
features to guide the tag propagation.

4 Conclusion

In this paper, we proposed a joint visual-semantic propagation model for image
tagging. The joint visual-semantic modeling exploits tag information and image
features in the input feature space to mine the relationship between tag and
local image region, and a visual-guided LSTM is introduced to model the tag
correlation and propagate multiple tags in an iterative way. We train our model
with a novel diversity loss in an end-to-end manner. We conducted experiments



10 Y. Ma et al.

on three benchmark datasets. The experimental results demonstrated that our
model achieves superior performance to the state-of-the-art methods, especially
for some small objects.
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